
Generic Data Services for the Management of Large-scale Data
Applications

Wolfgang Süß, Karl-Uwe Stucky, Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak,

Institute for Applied Computer Science, Campus North
Karlsruhe Institute of Technology
P.O. Box 3640, 76021 Karlsruhe

Germany
wolfgang.suess@kit.edu http://www.iai.kit.edu

Abstract: A new metadata-driven concept of generic data management services for a wide range of applications
for processing large-scale data of arbitrary structure is introduced. The novelty of the approach is a metadata
structure that subdivides them into three basic metadata types according to their functionality: for the
description of the structure and type of data, for the specification of key values for data identification, and for
security and organizational purposes. A first implementation of core features and the feasibility of the concept
is demonstrated by managing the data storage for an application, which measures and analyses voltage data
from electrical power grids. Since electrical measurement data needs privacy protection, our proposal to
address this requirement is outlined.

Key-Words: generic data services, metadata, object-oriented data management, large-scale data, data security

1 Introduction
The challenge of large-scale data management and
analysis in different science communities leads to
research and development in the areas of generic
technologies and infrastructures for data
management, access, and security. The SimLabs of
KIT [1], community-specific Data Life Cycle
Laboratories [2], and other users of the KIT Large-
scale Data Facility (LSDF) [3,4] deal with large and
differently structured data. Applications in major
research fields like energy, climate, or particle
physics range from modeling tools, simulation, and
optimization to analyses of experimental data.
Common demands are
o comfortable and reliable data storage and

retrieval,
o a wide variety of search functions on different

data structures, and
o high security and privacy levels.

The amount of data processed by the given
applications varies from several gigabytes for
object-oriented models up to hundreds of terabytes
for experimental and simulation time series and
their analysis.

In order to fulfill these requirements a generic
data management system was introduced as a
preliminary concept in [5] and [6]. Generic in this
context denotes the independence from applications
and storage systems or organizational types of
storage like databases or file systems. The concept

comprises the following features in addition to basic
abilities, such as reading, writing, and deleting:
o Management of arbitrary structured data

Data objects consist of identifying data items,
which must be readable independently of the
platform, and optional arbitrarily structured user
data. Data objects are returned in the same structure
and granularity as they were stored.
o Identification of data objects by metadata

The identifying data items of an object are
regarded as metadata which must be unique in their
entirety. Such metadata can be used to search for
single data objects or groups thereof.
o Security features, including
 secure communication with the data

management system,
 safe storage, including measures against data

loss,
 data integrity and its verifiability,
 accessibility restricted to authorized

personnel, and
 measures to ensure data privacy and

compliance with data protection laws.
 Integration of different types of storage

systems.
 This expanded view of the metadata concept

confirms the change and development of
their meaning and usage over time as
described in detail by Mannens et al. [7],
who point out an evolution of the role of
metadata.

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 265 Volume 15, 2016

In this paper, we elaborate the concept of
Generic Data Services (GDS), which is aimed at
satisfying the above requirements based on object-
and service-oriented principles. It will provide users
with a convenient and secure way to store, manage,
and retrieve data. Additionally, first prototype
implementation will be reported.

The paper is organized as follows: After a
discussion of related work in Section 2, we will
introduce the overall concept of the GDS in detail in
Section 3. This is followed by a description of the
current implementation and first applications in
Section 4. In Section 5 we summarize the paper and
give an outlook on future work.

The heading of each section should be printed in
small, 14pt, left justified, bold, Times New Roman.
You must use numbers 1, 2, 3, … for the sections'
numbering and not Latin numbering (I, II, III, …)

2 Related Work
Many Big Data studies point out that data
management in science and technology today
requires new methods, architectures, and software.
The generic character of software modules and the
key role of metadata are critical factors when coping
with the new challenges. Following, a collection of
references shall confirm this point of view.

Ailamaki et al. [8] examine techniques to
address important requirements of general-purpose
scientific data management. They identify scale,
rate, and complexity as key issues that require new
developments, including automation of metadata
processing and data organization. Structured and
unstructured data should be managed transparently;
especially experimental data can benefit from
object-oriented modeling. As soon as in 2008, Becla
and Lim [9] in their first report on a workshop on
extremely large databases outlined that assuming a
perfect schema for storing structured and
unstructured data seems to be inadequate.

Gray [10] suggested that it is necessary to
support scientists by building generic tools and he
gave a list of generic problems like e.g. a common
schema, data organization, or building and
executing models. It is this idea of a generic system
for scientific and operational data management that
motivated the developments presented in this paper.

As regards energy management systems, the
IEC1 61970-403 [11] standard explicitly covers
generic data access and shows the importance of

1 IEC: International Electrotechnical Commission (www.iec.ch)

transparent data management. It refers to data
entities which are defined in the IEC 61970-3xx
series as Common Information Model (CIM).
These data are described in [12], where it is also
stated that data services have to be "as generic as
possible". IEC 61970-402 [13] standardizes
common services for energy management systems
and, inter alia, describes common resource
identification and common resource description. In
[14] the authors present a combination of CIM and
OPC UA to build an ICT-architecture for the utility
domain based on a semantic web services concept.
OPC2 Unified Architecture is a communication
protocol that uses object-oriented techniques to
generically handle typed instances [12,15].

Shahabi et al. [16] describe their OLAP3 tool
ProDA and show how database management
systems have to be extended by analytical query
capabilities to provide an appropriate data
management for scientific analyses of large data
sets. Szalay and Blakely [17] report on database-
centric computing and emphasize the importance of
building modular systems for large-scale data.
Bender et al. [18] focus on the workflow properties
of scientific data processing and analyzing. They
propose a framework based on REST4 services
with a domain-independent generic architecture to
fill the gap in their grid- and cloud-based systems
concerning common data models and abstract
interfaces. Another example is the SIMPL
framework described in [19]. SIMPL extends the
Business Process Execution Language BPEL by
data management activities that provide abstract
data access for scientific workflows. Parastatidis
[20] suggests knowledge-oriented research
infrastructures capable of linking information and
semantics.

The key method to achieve flexibility of the
desired generic data structures is their description by
additional metadata. Metadata are often described
as data about data, which only shows that a lot of
data can be considered metadata. It depends on the
point of view which data are considered metadata in
a given context. For this reason, different types of
metadata may be defined depending on the kind of
data the metadata are about. Marco [21], for
example, considers metadata to be mainly historical
data used in business processes. He distinguishes
technical metadata and business metadata, the latter

2 OPC: Object Linking and Embedding (OLE) for Process Control
3 OLAP: Online Analytical Processing
4 REST: Representational State Transfer

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 266 Volume 15, 2016

being of concern for application users. In [22] the
authors mention provenance metadata as a special
type of historical data in addition to metadata for

storage and access and two user-centric types for
user access arrangements and community-specific
metadata. A prominent example of provenance
metadata is the Dublin Core ([23] and [24]); it
defines a set of elements that describe internet
documents, which are frequently used in XML/RDF
documents.

Kogalovsky [25] presented a paper with a
systematic description of metadata as information
resources. Important statements in this paper are the
relative character of the separation into data and
metadata, the characterization of descriptions of the
data structure or format as metadata, and the
distinction between application-dependent and –
independent data.

The American National Information Standards
Organization NISO [26] summarizes
characterizations of metadata and different types of
metadata, with structural metadata describing data
objects, the embedding of metadata in objects or
their separate storing, an identification possibility by

certain combinations of metadata, and the
implementation of metadata as objects themselves.

The publications mentioned here and many

others show that data management on large scales
and for complex software and information systems
will benefit from modularity, object- and service-
oriented software designs, and generic data access
concepts. It has to support distributed data storage
and will need a well-structured metadata concept in
particular.

3 Overall Concept of Generic Data

Services
The objective of a generic data management system
is the independence of the application, its data
structures and data types, and of the underlying
storage systems (Fig. 1). To achieve this, a
semantically rich metadata concept has been
developed and data are handled based on strictly
object-oriented principles.

User data may but do not need to be structured
in an object-oriented way. Therefore, it is referred to

Fig. 1. GDS – Generic Data Services – currently comprise data access services to be used by applications, object
identification, access to storage for user data and security services. It is based on three different types of metadata (see
Sect. 3.1). The figure also shows applications and storage systems (databases and file systems) that are currently
currently connected to GDS

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 267 Volume 15, 2016

user data elements which themselves consist of data
items of any cardinality that can be of standard data
types like integer or string, or other data elements.
Items containing unstructured data are treated as
byte arrays. Data elements of the same structure and
types are combined and the combination is called a
kind of user data and given an identifying name.
When looking at that in an object-oriented way, we
have corresponding objects with their attributes and
classes designated by their class names.
Consequently, GDS distinguish between the world
of user data and its GDS-internal object-oriented
counterpart that will be created when GDS are
configured for a certain application and kind of data
(see Sect. 3.3).

3.1 GDS Metadata Types
GDS are based on metadata of three different types:

1. Application metadata (AMD): [25]
explicitly mentions identification as a function that
is supported by metadata. For the same purpose,
GDS introduce AMD which comprise all data items
of a user data element that are used by the
application to identify a single data element. The
AMD values serve as identifying key values of a
data element and, thus, must be unique. Usually,
they are not empty. AMD can be of any data type.
The only situation, where no AMD are required, is
described in the last paragraph of section 3.3.

2. Structural metadata (SMD): The concept of
this type of metadata is of more general nature than
the application presented here. It is aimed at

describing an object-oriented class concept in
general and the object-oriented programming model
introduced in the next section in particular. In the
GDS context, SMD are used to describe the classes
corresponding to given kinds of user data. They are
usually derived from a description of the data given
by the user as discussed later in Sec 3.3.

3. Organizational metadata (OMD): They are
used by the GDS to organize the localization of data
elements in the storage system and to manage
security features. The user is affected by the latter to
some extent, as these data also include login data
and access rights. They are described in Sect. 3.4.

AMD and OMD are described in more detail in
the following sections starting with the object-
oriented programming model, followed by the AMD
and SMD.

3.2 Data Objects and Metadata
The GDS-internal representation of user data

elements is objects that are compliant with an
object-oriented programming model (OPM) which
is the basis of all GDS software development. As
shown in Fig. 2, an OPM-compliant class consists of
three attribute sections. The first section holds an
object identifier explained later, the second one
consists of attributes containing the AMD, and the
third one comprises further user data. The SMD

Fig. 2. The object-oriented programming model (OPM) defines a frame for the class and object structure. The
explicit description of the classes is given by the structural metadata (SMD). An object used to store a user data
element is stored in an appropriate storage device denoted by User Data. AMD and object IDs are stored

l f f bj id ifi i b GDS

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 268 Volume 15, 2016

describe type and structure of the classes and of all
attributes.

In the OPM all objects are identified by a
system-wide object ID that meets all requirements
for internal identification of an object, whereas
AMD are an alternative means of identification
mostly for humans and also applicable in software
algorithms. In fact, each object ID consists of two
IDs. The class ID identifies the object's class while
the instance itself and is identified by the instance
ID. Object IDs are provided and managed by a
particular service so that their uniqueness is
guaranteed. They are used for three purposes: To
reference objects that are not stored in the main
memory or remote objects, for administrative tasks
like localization in GDS, and thirdly, the class ID is
required for the SMD as described below. For both
IDs eight-byte numbers are used by the current
implementation, which is sufficient for about
3.4e+38 objects. For comparison, the estimated
number of stars in the universe amounts to 1022 to
1024 [27].

As mentioned above, the SMD are used in GDS
to describe the user data. For this purpose, user data
elements of the same structure and item data types
are treated equally and are represented by a class.
Frequently, more or less large parts of the user data
structure need not to be known by the GDS. In such
cases, all or parts of these user data can be regarded
and stored as unstructured data items comparable to
binary large objects (blobs) in database applications.
As shown in Fig. 2, the AMD and the object ID are
stored separately as a metadata catalog by the GDS.
Depending on their structure and user access
requirements, the objects containing the complete
user data are stored in appropriate storage devices

for mass data. An application gets the data back,
with their structure and granularity corresponding to
those of the data passed to the GDS.

As SMD are an essential part of the GDS
management functions and will be essential for all
OPM-compliant software, they are explained in
detail and by means of an example in the remainder
of this section. The SMD consist of several classes.
As they are OPM-conform, each data item has an
object ID, i.e. a classID and an instanceID. To
describe the class associated with a specific kind of
user data, the SMD class ClassDescr is used, as
shown in Fig. 3. Each ClassDescr consists of the
attributes applClassID and a class name
applClassName, which can be used by the application
to address its specific kind of user data. The
applClassID identifies the class that describes the
kind of user data denoted by the corresponding
applClassName. The class ClassDescr has three
additional kinds of attributes, which describe the
user data. The first category called amdAttributes is
mandatory and describes the AMD. Its elements are
AttrDescr objects, all of which have an attribute
called attrName holding the name of the data item
the AttrDescr object describes. The type of an AMD
item can be either a simple data type like integer or
string or it can be another object. In the latter case,
the class of that object is described by a new SMD
object, the applClassID of which is stored in the
refClassID attribute. This implies a reference to the
ClassDescr object of that AMD attribute. The
userAttributes are based on the same AttrDescr class.
The third category is called userBlobs and it is used
to describe the optional unstructured user data,
which are always stored as byte arrays. For
consistency, this byte array is treated as any other

Fig. 3. Class schema of the
SMD. SMD objects are
used to describe a single
user data element, which
usually consists of AMD
and may have further
structured or unstructured
user data items. Each
structured data item can be
either another object or of
any simple data type like
Boolean or Double

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 269 Volume 15, 2016

class and described by another ClassDescr object.
The entire class structure is shown in the diagram of
Fig. 3. It allows for full flexibility in describing the
data items, including the AMD of user data
elements, by SMD. From the point of view of the
GDS, the SMD serve for administrative purposes of
the management of user data and they are essential
for a generic interface between the GDS and an
application, as will be explained in more detail later
on.

3.3 Use Case Electrical Data Recorder
The usage of the introduced SMD schema will

be illustrated by a generalized example of user data.
At this point, it is just of interest that they are
generated by an electrical data recorder (EDR),
which measures voltages in a power grid for a fixed
time period and gives the results as time series,
which are treated as unstructured data. Additionally,
information about the location and the beginning of
the measurement must be stored, which together are
unique and, thus, serve as AMD. A corresponding
OPM-compliant object diagram is shown in Fig. 4.
Each data item is stored in an object of the class
EDRMeasurement. Fig. 4 shows an object of an
exemplary measurement, here denoted by edrM-408.
This object contains two AMD items: The
startingDateTime and the edrLocation, which itself
consists of city, street, and streetNumber, thus
resulting in four elementary AMD attributes. The
measured time series data are stored in the edrData
attribute. The meaning of the class IDs will be
explained in the following discussion of the
corresponding SMD. The instanceID values depend
on the sequence of object creation and otherwise are
arbitrary.

Fig. 5 shows how the three classes used to store
the data of the given EDR example are described by

SMD. The class EDRMeasurement is described by
the object edrMeasurementClassDescr of the class
ClassDescr, which contains the name of that user
data class (here EDRMeasurement), its applClassID,
and two attributes for the description of the user
data. The first, amdAttributes, consists of two
elements: One of class ClassAttr and one of class
SimpleAttr. The latter describes the attribute
startingDateTime of class EDRMeasurement. The other
one describes the attribute edrLocation, which is an
instance of the class Location to which the refClassID
48 refers. This class has three attributes of simple
data types, as is shown by the object
locationClassDescr in Fig. 5. They are described by
the attribute attributes, which consists of three
elements describing the two strings for city and street
and the integer for streetNumber. Consequently, the
edrLocation attribute of object edrM-408 in Fig. 4
holds the value 48 as classID. The only user data
item in Fig. 4 that has not yet been covered is the
unstructured edrData. It is described by the
remaining userBlobs attribute of the SMD object
edrMeasurementClassDescr. It is a ClassAttr with the
attrName edrData and the refClassID 10. The
refClassID refers to a class ByteArray. It is described
by the SMD ClassDescr named byteArrayClassDescr,
which has an applClassID of the same value. Again,
this is the classID of edrData object of the user data
example shown in Fig. 4.

3.4 Generic Application Interface
In general, user data can be of any structure. As

a first step, we assume that the interface for
exchanging data between an application and the
GDS can be based on one of the widely spread

Fig. 4. Object diagram of a user data example consisting of one unstructured
user data item, called edrData, and two AMD. One is a simple-type string
holding the starting time of the measurement and the second one is an object
called edrLocation of the class Location. The values of the classID attributes will
be discussed in conjunction with Fig. 5

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 270 Volume 15, 2016

technologies for data description and exchange like
XML or JSON.

Fig. 6 gives an overview of the generic data
management system, which is divided into a part for
data description (upper half) and one for data
management (lower half). The integration of a new
application starts with the definition of the structure
of the user data and its basic types, which is
supported by the User Data Description Editor
UDDE. The editor guides the user in describing the
data structures and assists with the definition of
classes and attributes. The results are structural
metadata (SMD) shown in the center of Fig. 6 as
the linkage between the data description and data
management parts of the GDS. The central role of
the SMD is underlined in the figure by a lighter
shade than the other data storage systems. Three
components are based on SMD. First, the GDS
needs SMD to manage the user data. Second, the
class generator (CG) uses SMD to create OPM-
compliant classes for the user data, which include
methods for the construction of the objects and for
their storage management. Third, the interface
generator (IG) uses SMD to produce interface
descriptions like XML or JSON schemata, which
can be used by the user data interface of the
application for serialization and deserialization of its
data. A generated schema describes the data format
of the interface between the user application and the
GDS and is used by the GDS for data administration
like writing, retrieving, or deleting user data. The

GDS converts the data into OPM-compliant objects
and stores them in the user data storage as shown in
Fig. 6. Additionally, the AMD are stored separately,
since they serve as a metadata catalog and are used
to identify user data objects as described in the
previous section.

For services like reading or deleting data, the
objects must be addressed. This can be done by the
application by directly providing AMD, including
the name of that kind of user data, or by using object
IDs In the latter case, the user data elements of the
application have been generated as OPM objects or,
in other words, we have an OPM-compliant
application. Of course, such an application can
alternatively use AMD.

3.5 Organizational Metadata and Security
Organizational metadata (OMD) serve three
purposes:
• Localization of data objects and storage

(management of storage access),
• management of security issues, and
• logging of data access, if required.
They will be described in more detail in the
following sections.

Fig. 5. Object diagram of the
SMD for the EDR example
of Fig. 4. Since the instance
IDs are not needed in the
present context, they are
omitted here for reasons of
clarity. Since classes like
ClassDescr, ClassAttr, or
SimpleAttr are used by the
GDS in an early stage, they
have low class IDs. Since the
class ByteArray used for
unstructured user data is
something like a basic data
type for the GDS, it is
described by an SMD object,
which is generated about as
early as the standard classes
for SMDs. Thus, it receives a
very low applClassID

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 271 Volume 15, 2016

3.5.1 Organizational Metadata for Object
 Localization
GDS comprise an OMD database that contains a
table listing several OMD on a per-data-object basis
(depicted in Fig. 7). The table provides several
features. At first, it connects object ID with AMD
(instanceID and AMD columns) and, thus, enables
the GDS to switch between both options for object
identification. The next part consists of the columns
storageID and accessMD, which contain the
localization data. storageID refers to the storage
system, while the column accessMD contains
information required for the access to the selected
object inside this storage system, like the path and
file name in case of a file system. GDS can use
these localization data by connecting them with the
identification information in the same table row.

The column objectSetID is relevant to security
issues and points to an entry in another database
table. The next section will go into details.

3.5.2 Management of Security Issues
Data objects shall be accessible by authorized

personnel or authorized applications only. As it is
expected that many objects can be treated equally
with respect to access rights and ownerships, objects
may be grouped into object sets and only these sets

are subject to ownership and access rights. The
aggregation of objects into sets is done according to
rules given by the user based on application-
dependent considerations. If single objects are to
have their own rights, they must be placed in a one-
membered object set. Object sets are identified and
managed by an ID – the objectSetID in Fig. 7.

Furthermore, a user management is required.
GDS users can own object sets and can be a member
of one or more groups. Each object set is owned by
exactly one user. There are three access rights (read,
write, and delete). For an update operation, the
combined rights of writing and deleting are
required. As we only do data management, no
execution rights are required. These three rights
apply to owners of object sets and also to user
groups to control the access of their members to
object sets. Owner rights and the rights of one or
more groups to access an object set are cumulative.
As more than one group may have access to an
object set, the approach is comparable to the
concept of access control lists [28] in this respect.
For the management of users, groups, object sets,
and their access rights, another category of OMD is
required. The concept of users, groups, and object
sets is explained in more detail in [29].

Fig. 6. Overall concept of
the generic data
management system with
its central data storage
system containing
structural metadata (SMD).
The figure shows data flow
by big arrows and the
generation of OPM-
compliant classes in a
suited programming
language by small arrows.

Fig. 7. Possible organization of
AMD and the instanceID of an
object in conjunction with
OMD required for access
(storageID, accessMD) and
security (objectSetID)

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 272 Volume 15, 2016

To ensure data integrity, each stored data object
is accompanied by a checksum to detect
modifications. These checksums also belong to the
OMD.

Logging of data access can be activated for
object sets as a whole depending on the user and the
type of access like reading or erasing. The
information for this function is also part of the
OMD.

Access to the GDS system is provided by a
Virtual Private Network. The only exception is the
local access of administrators to the servers. The
mass storage system itself is accessed by secure
protocols like sftp or ssh. Further details of the
security concept can be found in [29].

3.6 Generic Storage Management
Storage systems currently in use or studied for

usability within the scope of SimLab Energy [30,31]
range from the file systems NFS [32], GPFS [33],
Tahoe-LAFS [34], and HDFS [35] to the data
system iRODS [36] and database systems MySQL
[37], MongoDB [38], and Neo4j [39]. This single
application scenario already demonstrates that the
GDS are to be independent of the storage systems
used. To achieve this, a hierarchy of three main
layers is used, as shown in Fig. 8. The top layer
offers storage-independent methods of generic
objects for the basic access functions. Objects are
identified by their object ID. The main function of
the middle layer is the localization of an object:
Where is the object stored and how can the storage
system be accessed properly? This means access
methods, authorization, file names, and the like. The
user data serving as AMD will be stored in such a
way that they can be used efficiently for search
operations, while the complete object, which is
expected to be much larger in most cases, may be
stored in different storage systems, which are suited

for handling large data objects. The details of the
storage systems integrated are hidden to the middle
layer by the lowest layer, which consists of storage
system-specific modules. If necessary, packing and
unpacking functions for large data systems can be
located on this level.

In addition to the basic data access functions,
the GDS offer an extended copy function, which
copies data objects to a specified storage system to
which the user application has access. The idea is to
provide the user with his data or a subset thereof as
required for a particular user application. These data
objects are usually identified by their AMD, which
can also be given as value ranges. This feature is
required for data analysis of the SimLab Energy
[40,41].

4 Implementation and
First Applications

The first implementation of a basic version of the
GDS is driven by mass data management for
electrical data recorders and by power grid
simulation data. This application is motivated by the
present transition of the electrical supply system in
Germany from a mainly centralized, nuclear or CO2-
intensive power generation with a hierarchical
distribution network to a much more decentralized
system and the utilization of renewable energies. To
achieve a reliable control of such a power system
based on much more volatile power generation,
information about the exact system state, preferably
in real time, is required [42]. On the other hand,
detailed data on the system state are owned by the
utilities or distributors and not comprehensively and
freely available to researchers. Thus, information
about the grid that is easily accessible and not
limited in access by property issues is collected. As

Fig. 8. Three layers of the generic interface
to different storage systems. On the lowest
layer, storage system-specific modules
handle the details of the integrated storage
systems and provide a neutral interface to the
upper layer

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 273 Volume 15, 2016

energy feeding elements like photovoltaic farms
connect to the low-voltage network and require
advanced voltage control to maintain quality and
stability [43], an investigation database is
established by storing raw high-rate captures of the
low-voltage network over a long term for large-
scale comparison and later research.

As a consequence, a new electrical data
recorder was developed [41], which produces a
large amount of data, as will be described in the
next section. The data measured among others serve
as a basis for the verification of simulation models.
Measured data, simulation models, and simulation
results are managed by the GDS, as described in
Section 4.2. Both applications, measurement and
simulation, are briefly introduced here, mainly
under the aspect of their data administration
requirements, because their needs influence the
implementation process to a great extent. For further
details about the two applications and their
motivation, the interested reader is referred to
[44,45,41]. It should be pointed out here that the
GDS are not limited to these applications, but that
the underlying concept comprises all types of
object-oriented data, as was described in the
introduction.

4.1 Electrical Data Recorders
To record high-resolution time series of voltage

and current measurements, the so-called “Electrical
Data Recorder” EDR was developed. It consists of a
16-bit DAQ board, a GPS unit, and a computation
unit with VPN-based internet access. Three input
channels are used for the three-phase voltage
measurement at a range between -430 V and +430 V
with an accuracy better than 0.1%. Four more input
channels can be used for synchronous current
measurements. The typical rate is 12.8 kHz, while
the adjustable rate is limited to 25 kHz [44]. One
channel is used to simultaneously capture the GPS
pulse-per-second signal for precise synchronization
purposes. An EDR does some additional
preprocessing and extracts features and
characteristics of the measured time series according
to EN50160 [46].

Based on the currently used rate of 12.8 kHz,
an amount of 8.36 GiB per day and per EDR must
be stored for three phase voltage captures. This is
calculated as follows: Three channels times two
bytes per sample times 12,800 per second times 4/3
for base-64 coding times 60 seconds, which,
together with additional XML tags and preprocessed
feature data, results in approximately 5.95 MiB per
file and minute. Per day, 1440 of these files are

generated, which together require 8.36 GiB of
storage capacity [45].

EDR data are transferred as XML files and
stored in objects of class EDRraw. They contain the
time series data of a minute, which can be regarded
as unstructured user data, and additional AMD.
These AMD describe the pseudonymized
measurement location and the recording time. For
reasons of data protection, measurement locations
are pseudonymized to EDRnnnn, where nnnn is a 4-
digit number administrated by the EDR users of the
GDS and not by the GDS itself. An example of an
XML file is given in Figure 9. It shows the AMD of
an object of class EDRraw and additional user data
called data here, which serve as a filename. Note
that the information about the class structure and the
data types of the attributes is omitted in the XML
file, as this information is part of the SMD of the
class EDRraw.

Fig. 9. XML file of an EDR 1-minute measurement
containing the AMD of the data set

Currently, EDR data are not returned
individually for further processing, but copied in
larger groups to a Hadoop file system. They are
stored there using the file names which were given
as additional user data when the object was stored.
Selection is based either on one EDR device and
location for a longer period of time or on several
measurement sources and a short time range.

4.2 Power Grid Model Data
The medium-term goal of the SimLab Energy

of KIT is the development of a simulation model of
the power grid of the entire Campus North of KIT.
For this purpose, the Electrical Grid Analysis
Simulation Modeling and Visualization Tool
eASiMOV was developed, which integrates open
source tools like GridLAB-D [41]. As it is to be as
precise and close to reality as possible, the measured
high-resolution data from the EDRs will be used to
validate the model components and the model itself.
First models based on GridLAB-D were developed

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 274 Volume 15, 2016

which can be managed and stored by the GDS. It is
planned to perform simulation runs of larger parts of
the KIT grid by eASiMoV and to compare the
resulting time series data with the data measured by
the EDRs. The storage of the simulation results can
also be managed by the GDS.

4.3 Secure Data Transfer
According to European and German law,

measurement data of electrical power are subject to
privacy protection, if the data allow conclusions to
be drawn with respect to the personal power
consumption and usage. This will be the case in
most data acquisition situations. Consequently, the
data must not only be stored and accessed securely
as described in Sect. 3.4, but transport of the
measured data must be protected against corruption
and monitoring as well.

Fig. 10. Secure access to the currently implemented GDS
via a VPN solution.

As described in detail in [29], this is achieved
by a virtual private network (VPN), which is formed
by the GDS server, the EDRs, other data acquisition

devices, and GDS clients, see the upper part of Fig.
10. At present, one VPN router is active, while a
second one is available as a stand-by device.

Only GDS users shall have access to the VPN.
On the other hand, the whole system is part of the
KIT network. Our solution is to have a GDS and
VPN user administration, which is completely
separated from KIT users. The GDS administration
tool manages the users, groups of users, and their
rights. It is based on a list of users allowed to access
the GDS via VPN to the Tacacs+ server, which
provides access management for the VPN router.
Details of this highly scalable solution can be found
in [29]. The GDS database server, which is visible
within the local domain only, is accessible merely
by its registered clients. At present, the HFDS server
is being accessed via the KIT LAN, while the
planned extension to the GPFS server will be done
securely via ssh or scp.

4.4 Current State of Implementation
As stated before, the implementation of the

concept is driven by the requirements of first
applications and its users. At present, a basic
version of the GDS is implemented, which covers a
part of the components shown in Fig. 6. The core
functionality of the GDS comprises storage of
objects and retrieval via AMD. The implementation
of user- or group-based access rights is under way.
First versions of the UDDE and of the IG are
implemented. The database scheme for SMD has
been developed and a MySQL database for SMD
storage has been set up and is about to be adapted to
the current GDS. Various solutions for OPM object
serialization are being tested for applicability within
the interface generator. These new components will
allow for a substitution of the currently handmade
SMDs and XML schemata by automatically
generated ones.

The GDS server is already working in a hot
standby and a simple load balancing policy: Five
servers are working redundantly in parallel. At
present, the load is small compared to the capacity
of one server. This mode of operation is mainly
aimed at offering a highly available service based on
comparably less reliable standard hardware.

5 Summary and Outlook
We introduced our new approach of metadata-
driven generic data management services (GDS) and
presented the underlying concept of application,
structural, and organizational metadata. This
approach allows for flexible management of

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 275 Volume 15, 2016

different data structures based on an object-oriented
view. The current version of structural metadata
(SMD) has been highlighted in detail, since SMD
are essential for the object-oriented handling of
application data. A first implementation for the
management of electrical measurement data was
described, with emphasis placed on associated
security issues due to their importance to energy
data life cycles. The use of standard techniques for
secure data transmission has the advantage of
relying on the services of commercial providers for
future innovations and challenges.

Future work will concentrate on further
developments of all GDS components, in particular
of the user data description editor UDDE and of the
interface generator. The latter shall serialize user
data elements for data transfer to the GDS and GDS
data objects vice versa. The concept of structural
metadata will be enhanced so that it can deal with
hierarchical nets of objects and classes, as it will be
required for a detailed storage of model data of e.g.
power grids. This development will be guided by
the idea of ontology-based database access [47]. The
frequent repetition of metainformation makes XML
a memory-intensive exchange format. This clear
drawback is reduced to some extent by JSON, but
not solved really. Thus, we intend to develop a more
compact and much less redundant exchange format
based on SMD.

The integration of SMD into the core of GDS
will progress into several directions: A class
generator that produces Java classes has to be
established. SMD can be a basis of generically
invoking user interfaces for administrative access to
the GDS, for front ends that have to be tailored to
user wishes or even for generating the user
interfaces of UDDE. SMD can also be utilized for
generically storing data in various services of the
third storage system-specific layer in Fig. 8.

The strict requirements relating to security and
privacy in energy applications will continue to
improve the standard method-based solutions,
mainly in the fields of anonymization,
pseudonymization, and encryption.

References:
[1] Kirner, O. KIT - SCC - Research and

Innovation - Computational Science and
Engineering - Simulation Laboratories.
http://www.scc.kit.edu/en/research/5960.php
(accessed on 22 February 2016).

[2] Meyer, J. LSDMA - The Project.
http://www.helmholtz-lsdma.de/56.php
(accessed on 22 February 2016).

[3] García, A.; Bourov, S.; Hammad, A.; van
Wezel, J.; Neumair, B.; Streit, A.; Hartmann,
V.; Jejkal, T.; Neuberger, P.; Stotzka, R. The
Large Scale Data Facility: Data Intensive
Computing for Scientific Experiments. In
25th IEEE Int. Symp. on Parallel and Distrib.
Processing, IPDPS 2011, Workshop Proc.,
Anchorage, Alaska, USA, 16-20 May 2011;
IEEE: Piscataway, NJ, 2011; pp 1467–1474.

[4] van Wezel, J. KIT - SCC - Research and
Innovation - Data Management, Data
Analysis and secure IT Federations - Large
Scale Data Management & Analysis.
http://www.scc.kit.edu/en/research/lsdf.php
(accessed on 22 February 2016).

[5] Maaß, H.; Çakmak, H.K.; Süß, W.; Quinte,
A.; Jakob, W.; Muller, E.; Boehm, K.;
Stucky, K.-U.; Kuehnapfel, U.G. Introducing
a new voltage time series approach for
electrical power grid analysis. In 2012 IEEE
Int. Energy Conf. and Exhib.
(ENERGYCON), Florence, Italy, 9-12 Sept.
2012; pp 890–895.

[6] Maaß, H.; Çakmak, H.K.; Süß, W.; Quinte,
A.; Jakob, W.; Stucky, K.-U.; Kuehnapfel,
U.G. Introducing the Electrical Data Recorder
as a new capturing device for power grid
analysis. In IEEE Int. Workshop on Applied
Meas. for Power Systems (AMPS 2012),
RWTH Aachen, Germany, 26 - 28 Sep 2012;
pp 1–6.

[7] Mannens, E.; Verborgh, R.; van Hooland, S.;
Hauttekeete, L.; Evens, T.; Coppens, S.; van
de Walle, R. On the Origin of Metadata.
Information 2012, 3, 790–808,
doi:10.3390/info3040790.

[8] Ailamaki, A.; Kantere, V.; Dash, D.
Managing scientific data. Commun. ACM
2010, 53, 68–78,
doi:10.1145/1743546.1743568.

[9] Becla, J.; Lim, K.-T. Report from the First
Workshop on Extremely Large Databases.
Data Sci. J. 2008, 7, 1–13,
doi:10.2481/dsj.7.1.

[10] Hey, T.; Tansley, S.; Tolle, K. Jim Gray on
eScience: A Transformed Scientific Method.
In The Fourth Paradigm: Data-Intensive
Scientific Discovery, Second printing,
Version 1.1; Hey, T., Tansley, S., Tolle, K.,

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 276 Volume 15, 2016

Eds.: Redmond, Washington, 2009; pp xvii–
xxxi.

[11] International Electrotechnical Commission
IEC. Energy management system application
program interface (EMS-API) – part 403:
Generic Data Access, 2009 (IEC 61970-403).

[12] Uslar, M.; Specht, M.; Rohjans, S.; Trefke, J.;
González, J. The Common Information
Model CIM. IEC 61968/61970 and 62325 -- a
practical introduction to the CIM; Springer:
Berlin, New York, 2012.

[13] International Electrotechnical Commission
IEC. Energy management system application
program interface (EMS-API) – part 402:
Common Services, 2009 (IEC 61970-402).

[14] Rohjans, S.; Uslar, M.; Juergen Appelrath, H.
OPC UA and CIM: Semantics for the smart
grid. In Proc. of Transm. and Distrib. Conf.
and Exposition (T&D), 2010 IEEE PES, New
Orleans, LA, USA, 19 - 22 Apr 2010; pp 1–8.

[15] Mahnke, W.; Leitner, S.-H.; Damm, M. OPC
Unified Architecture; Springer: Berlin
Heidelberg, 2009.

[16] Shahabi, C.; Jahangiri, M.; Banaei-Kashani,
F. ProDA: An End-to-End Wavelet-Based
OLAP System for Massive Datasets.
Computer 2008, 41, 69–77,
doi:10.1109/MC.2008.130.

[17] Szalay, A.; Blakeley, J. Gray's Laws:
Database-centric Computing in science. In
The Fourth Paradigm: Data-Intensive
Scientific Discovery, Second printing,
Version 1.1; Hey, T., Tansley, S., Tolle, K.,
Eds.: Redmond, Washington, 2009; pp 5–11.

[18] Bender, A.; Poschlad, A.; Bozic, S.; Kondov,
I. A Service-oriented Framework for
Integration of Domain-specific Data Models
in Scientific Workflows. Procedia Comput.
Sci. 2013, 18, 1087–1096,
doi:10.1016/j.procs.2013.05.274.

[19] Reimann, P.; Reiter, M.; Schwarz, H.;
Karastoyanova, D.; Leymann, F. SIMPL - A
Framework for Accessing External Data in
Simulation Workflows. In BTW 2011,
Datenbanksysteme für Business, Technologie
und Web ; 14. Fachtagung GI-Fachbereichs
"Datenbanken und Informationssysteme"
(DBIS), Kaiserslautern, Germany, 02. -
04.03.2011; Härder, T., Ed.; Ges. für
Informatik: Bonn, 2011; pp 534–553.

[20] Parastatidis, S. A Platform for All That We
Know: Creating a Knowledge-Driven
Research Infrastructure. In The Fourth

Paradigm: Data-Intensive Scientific
Discovery, Second printing, Version 1.1;
Hey, T., Tansley, S., Tolle, K., Eds.:
Redmond, Washington, 2009; pp 165–172.

[21] Marco, D. Building and managing the meta
data repository. A full lifecycle guide; Wiley:
New York, 2000.

[22] Hey, T.; Trefethen, A. The data deluge: an e-
Science perspective. In Grid computing:
Making the global infrastructure a reality;
Berman, F., Fox, G., Hey, A.J.G., Eds.;
Wiley: Chichester, England, New York,
2003; pp 809–824.

[23] DCMI. DCMI Home: Dublin Core®
Metadata Initiative (DCMI).
http://dublincore.org/ (accessed on 22
February 2016).

[24] Marco, D.; Jennings, M. Universal meta data
models; Wiley: Indianapolis, Ind, 2004.

[25] Kogalovsky, M.R. Metadata in computer
systems. Program. Comput. Soft. 2013, 39,
182–193, doi:10.1134/S0361768813040038.

[26] National Information Standards Organization
NISO. Understanding Metadata.
http://www.niso.org/publications/press/Under
standingMetadata.pdf (accessed on 22
February 2016).

[27] esa. How many stars are there in the
Universe? / Herschel / Space Science / Our
Activities / ESA.
http://www.esa.int/Our_Activities/Space_Scie
nce/Herschel/How_many_stars_are_there_in_
the_Universe (accessed on 22 February
2016).

[28] IETF / ISOC. RFC 4949 - Internet Security
Glossary, Version 2.
https://tools.ietf.org/html/rfc4949 (accessed
on 22 February 2016).

[29] Kramer, A.; Jakob, W.; Maaß, H.; Süß, W.
Security in Large-scale Data Management
and Distributed Data Acquisition. In Proc. of
the 3rd Int. Conf. on Data Manag. Technol.
and Appl. (DATA 2014), Vienna, Austria, 29
– 31 August 2014; Helfert, M., Holzinger, A.,
Belo, O., Francalanci, C., Eds.; INSTICC,
Portugal, 2014; pp 125–132.

[30] Süß, W.; Stucky, K.-U.; Quinte, A.; Jakob,
W. Performance Tests of Energy Data
Storage Using Different Distributed Parallel
File Systems. In Latest trends in applied
informatics and computing, Proc. of the 3rd
Int. Conf. on Appl. Inform. and Comput.
Theory (AICT'12), Barcelona, Spain, October

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 277 Volume 15, 2016

17-19, 2012; Carstea, C.-G., Ed., 2012; pp
123–128.

[31] Koch, D.P. KIT - SCC - Research and
Innovation - Computational Science and
Engineering - Simulation Laboratories -
SimLab Energy.
http://www.scc.kit.edu/en/research/8037.php
(accessed on 22 February 2016).

[32] Sandberg, R. The Sun Network File System:
Design, Implementation and Experience. In
Proc. of the USENIX 1986 Summer
Technical Conf. and Exhib., 1986.
http://www.cs.swarthmore.edu/~newhall/read
ings/nfs.pdf (accessed on 22 Febr. 2016).

[33] Schmuck, F.; Haskin, R. GPFS: A Shared-
Disk File System for Large Computing
Clusters. In Proc. of the 1st USENIX Conf.
on File and Storage Technol. (FAST 2002),
Monterey, CA, USA, January 28-30, 2002.

[34] Wilcox-O'Hearn, Z.; Warner, B. Tahoe: The
Least-authority Filesystem. In Proc. of the 4th
ACM Int. Workshop on Storage Security and
Survivability, Alexandria, VA, USA, October
27 - 31, 2008; ACM: New York, NY, 2008;
pp 21–26.

[35] Shvachko, K.; Kuang, H.; Radia, S.;
Chansler, R. The Hadoop Distributed File
System. In MSST '10 Proc. of the 2010 IEEE
26th Symp. on Mass Storage Systems and
Technol. (MSST), Lake Tahoe, NV, USA, 6 –
7 May 2010; pp 1–10.

[36] Hünich, D.; Müller-Pfefferkorn, R. Managing
Large Datasets with iRODS - a Performance
Analysis. In Proc. of the 2010 Int. Multiconf.
on Comput. Sci. and Inf. Technol. (IMCSIT),
Wisla, Poland, 18 - 20 Oct. 2010; Ganzha,
M., Ed.; IEEE: Piscataway, NJ, 2010; pp
647–654.

[37] Pachev, S. Understanding MySQL internals,
1st ed.; O'Reilly: Beijing, Sebastopol, CA,
2007.

[38] Redmond, E.; Wilson, J.R.; Carter, J. Seven
databases in seven weeks. A guide to modern
databases and the NoSQL movement;
Pragmatic Bookshelf: Dallas, Texas, 2012.

[39] Jordan, G. Practical Neo4j; APress: Berkeley,
CA, 2014.

[40] Bach, F.; Çakmak, H.K.; Maaß, H.;
Kuehnapfel, U. Power Grid Time Series Data
Analysis with Pig on a Hadoop Cluster
Compared to Multi Core Systems. In
Proceedings of the 2013 21st Euromicro
Int.Conf. on Parallel, Distributed, and

Network-based Processing, Belfast, UK, 27
February-1 March 2013; Stotzka, R.,
Milligan, P., Kilpatrick, P., Eds.; IEEE
Computer Society; IEEE: Los Alamitos,
Calif, Piscataway, N.J, 2012; pp 208–212.

[41] Maaß, H.; Çakmak, H.K.; Süß, W.; Quinte,
A.; Jakob, W.; Stucky, K.-U.; Kuehnapfel,
U.G. First Evaluation Results Using the New
Electrical Data Recorder for Power Grid
Analysis. IEEE Trans. Instrum. Meas. 2013,
62, 2384–2390,
doi:10.1109/TIM.2013.2270923.

[42] Bakken, D.; Bose, A.; Hauser, C.; Whitehead,
D.; Zweigle, G. Smart Generation and
Transmission With Coherent, Real-Time
Data. Proceedings of the IEEE 2011, 99, 928–
951, doi:10.1109/JPROC.2011.2116110.

[43] Stetz, T.; Yan, W.; Braun, M. Voltage
Control in Distribution Systems with High
Level PV-Penetration. In Conf. Proc. of the
25th Eur. Photovolt. Solar Energy Conf. and
Exhib., Valencia, Spain, 6 - 10 Sept 2010;
WIP-Renewable Energies: München, 2010;
pp 5000–5006.

[44] Maaß, H.; Çakmak, H.K.; Bach, F.;
Kühnapfel, U. Preparing the Electrical Data
Recorder for Comparative Power Network
Measurements. In 2014 IEEE Int. Energy
Conf. and Exhib. (ENERGYCON),
Dubrovnik, Croatia, 13-16 May 2014, 2014;
pp 759–765.

[45] Maaß, H.; Cakmak, H.K.; Bach, F.; Mikut,
R.; Harrabi, A.; Süß, W.; Jakob, W.; Stucky,
K.-U.; Kühnapfel, U.G.; Hagenmeyer, V.
Data processing of high-rate low-voltage
distribution grid recordings for smart grid
monitoring and analysis. EURASIP J. Adv.
Signal Process. 2015, 2015, 47,
doi:10.1186/s13634-015-0203-4.

[46] DIN. Voltage characteristics of electricity
supplied by public distribution networks;
Beuth Verlag: Berlin, 2016, EN 50160:A1.
http://www.din.de/en/getting-
involved/standards-
committees/dke/standards/65212!search-
na?query=EN+50160 (accessed on 22
February 2016).

[47] Kogalovsky, M.R. Ontology-based data
access systems. Program. Comput. Soft.
2012, 38, 167–182,
doi:10.1134/S0361768812040032.

WSEAS TRANSACTIONS on COMPUTERS
Wolfgang Süß, Karl-Uwe Stucky,

Wilfried Jakob, Heiko Maaß, Hüseyin K. Cakmak

E-ISSN: 2224-2872 278 Volume 15, 2016

